Straightening a Bent Hammered Coin

20th May 2015 — 20 Comments

001_533Once upon a time (about 2004-5) when I was a member of the Administration on a metal detecting site, I dug up a bent hammered coin. There was a member on there at the time called Clive Hallam (aka Mr. Mole) who offered to fix it for me. I duly sent it away and the coin was returned as good as new. Clive went on to write the little essay below and it is worth reproducing here.

I don’t know what has happened to him, but I’m sure he won’t mind if I spread his knowledge just a little further. I didn’t take a picture at the time and after looking at all my coins, I cannot detect the one that was straightened.

______________________________________________________________________________

CLIVE

Clive Hallam mucking about on the river – picture by JW

Clive wrote …

A recent discussion on how best to straighten a bent hammered coin prompted me to provide a basic explanation of the relevant metallurgical processes and techniques. My background in sculpture, jewellery and their restoration will assist me to provide this information as the fundamental techniques are similar, However, I am not a coin restorer by profession. In fact I have very little experience with coins, although I have on other archaeological artefacts. I therefore hope that this essay might be viewed as a foundation on which to build, editing and adding to it as new tips and techniques come to light and as such welcome any comments and input from the reader.

Metals

Metals are naturally occurring chemical elements. These elements are usually found in combination with other non-metallic elements, such as minerals oxides, sulphides, chlorides and so on. It is generally necessary through a process of refining to extract the pure metal component from the non-metallic dross. It is possible to separate these components into nearly a pure state because at high temperature the atoms of individual metals will link together and fuse in a liquid state. This process is called smelting. The atoms of metal cluster together to form molecules which as the liquid cools and returns to solid will create crystals. These crystals are referred to as grains that will order themselves into a regular pattern called a lattice. The structure of this lattice will largely determine the physical properties of that metal, its density, malleability, conductivity and so on.

Work Hardening and Annealing

The structure can be changed, the size of the grains can become smaller or larger which in turn will change the metals physical properties. For example as the grains become smaller the metal will become less malleable, harder to bend or brittle. The grains can in fact become so small that they may not be able to link together to form the lattice. The metals integrity is lost and it cracks. Similarly if the grains become too large this will lead to it becoming weak.

The usual way grains become small is through being worked, being bent, hammered and rolled. This process is referred to as work-hardening. The original structure can however be restored if the metal is heated to about 2/3 its smelting point and either allowed to cool very slowly or quenched in water. Precisely what method will depend on the metal used. This will allow the grains to recrystallise restoring the integrity of the lattice, which will restore the original qualities of the metal. This process of heating and quenching is called annealing. More about that later.

Embrittlement

Work hardening is not the only process that can alter the physical property of a metal. Metals are very rarely used in their pure state, more commonly two or more pure metals being fused together to make a compound called an alloy. This may be done to change the metal’s colour but more probably to create specific working properties such as hardness, density or corrosion resistance. Most alloys are not however permanently stable and will eventually break down. For example when silver is alloyed with copper. Pure silver is relatively soft and would be unsuitable for coins unless it was alloyed with a small amount of copper. The resulting metal is much harder. Copper might also be alloyed to reduce the quantity of silver for financial reasons as it is much cheaper. The separation of copper from its bond with silver in a silver alloy is called the precipitation of copper and leads to a condition called embrittlement

To understand how embrittlement occurs, imagine the structure of the alloys lattice as a dry stone wall and the rocks in the wall as representing the grains of metal. Our metal being an alloy will have grains made of fused copper and silver. So imagine the rocks made of copper and silver, all mixed together. Over a long time the copper begins to move to the surface of each rock. Eventually all the copper moves and we are left with rocks composed of silver that are very heavily holed where the copper has vacated. All the gaps between the rocks of our dry stone wall are now filled up with copper. The surface of each rock could be described as its boundary and that’s why copper is said to have precipitated out to the grain boundaries. Try now to imagine the dry stonewall as our metal lattice. It’s a real mess. There are grains of silver with loads of holes in them and a layer of copper around those grains. Very little is actually fused together. The metal’s integrity is completely lost, and naturally its original properties. The metal will in fact be very brittle and in the most extreme case could even become friable or crumbly. Some early Saxon coins suffer from this condition. This process is irreversible.

It is with the two processes of work hardening and embrittlement that we can now begin to consider a bent hammered coin

Peter

This coin was sent to me by Peter Halford. He says: “Since I’ve been using the method recommended I’ve not broken one. Here’s an example, but I have done ones that have been more folded. You still often will have a crease, but is much better-looking …”

Bent Coin

When a coin is bent the process of work hardening takes place as described earlier, and the grains around the bend will be made smaller. The malleability will also be decreased and possibly the lattice may have lost its integrity and cracked. In order to straighten the coin we will have to make it do even more work so we need to regain some malleability through annealing. As described earlier the process of annealing is going to allow for the small worked grains to recrystallise forming larger grains through the application of heat. To anneal silver it needs to be quenched in water. Most metals have different temperatures that must be reached for recrystallization to be complete. I specifically say complete because this is a process and recrystallization might start at a much lower temperature but only be complete at a higher temperature. For example, pure silver will begin to anneal at 80C but only be complete at 500C. A silver alloy might need a higher temperature to begin to anneal.

One might assume that it makes sense to completely anneal the coin, but what’s that process called embrittlement? What if our coin is suffering from that condition? Annealing won’t cure it; in fact heating a badly embrittled coin might actually make it substantially weaker. I recently saw the remains of an early Saxon coin that just crumbled before the restorer’s eyes moments after heating. Unfortunately the factors which need to be considered don’t end there. Applying heat might have an effect on surface corrosion products.

The heat may burn them out leaving the surface horribly pitted, but there are far more insidious results that might occur. The sulphides, chlorides and oxides that often make up those surface corrosion products might fuse with the silver substrate. This fusing will create new compounds the properties of which may be very difficult to predict. If our coin has cracks caused by work hardening, the silver holding together might be very thin and if fused with the corrosion products will usually give a very brittle property. We may think we’ve annealed it when in fact we’ve made it much weaker. It would be disastrous to then try to manipulate or work it. We might however be able to avoid this if we clean the coin very thoroughly beforehand, removing all the corrosion products. There is plenty of good advice on how best to do this in the standard coin-cleaning guides.

Another factor that needs to be considered is what effect heating the coin quickly might have. An already weakened coin might simply not be able to handle the shock. It might be important to consider how we apply the heat; it might be preferable to apply the heat very slowly. For example, the coin could be heated in the oven slowly raising its temperature before removing it and further raising the temperature through the direct application of a flame.

Once a decision to heat has been made, we need to know to what temperature and how to achieve that temperature. Our guide should be the most gentle application of heat to achieve the lowest temperature that is necessary. Remember that annealing is a process and we might be able to get away with not having to achieve a complete anneal. This will reduce the risks of those other factors coming into play.

Lets explore this further using some possible scenarios:

We have a slightly bent coin that upon magnification does not have any cracks around the bend. It isn’t a very old coin, there doesn’t appear to be any crystallization on it and it was made with a high proportion of silver. We consider the table of temperature and decide that a temperature of around 300C might just produce enough annealing to straighten this coin. 300C can be achieved in the oven or a chip pan. We heat the coin and immediately quench it in water. The coin can then be placed between two pieces of leather-covered wood and a gentle pressure applied. We feel the coin slowly flatten and stop when satisfied that the jobs complete. Any oil should however be washed away if chip pan heating was the method adopted.

The scenario

As we applied the gentle pressure on our coin we felt it wasn’t giving way easily. STOP. We need more of an anneal, this time applying more heat. A gentle method of achieving this is to place a smooth, flat and clean steal plate on the gas cooker. Stainless steal would be best. Place the coin on it. The heat will transfer though the plate and gently heat our coin. We however do need a guide as to the temperatures being obtained. As silver heats, it appears to change colour. It starts off whitish and will slowly move towards a dull pink and continue towards a cherry red. Our visual perception of this event can be determined by the ambient light conditions. For example in bright sunlight the gentle glowing dull pink might in fact be a much higher temperature than if that colour was observed in darker conditions. One person’s idea of a colour might be different from another so it will help to have a visual guide. The dull pink is the same colour as an earthworm. It represents a temperature of around 450°C-500°C and is the next step to which we want to take our annealing. As soon as the coin matches our earthworm colour we pick it up and quench. Another and perhaps a more accurate method involves making a small mark on the coin with a black felt tip pen. Use one of those big ones used to write on packages. When the coin is then heated, the ink will burn away at about 500°C -550°C. So using one of these techniques bring the coin to the desired temperature and quench, then try to apply pressure to flatten the coin.

Annealing coins to the temperatures above will in most cases be sufficient. Heating to temperatures above this should be regarded as extreme and not standard practice. Once the temperature reached starts to resemble a cherry red colour it is very easy to overheat and instead of annealing our metal to achieve malleability, we begin to give the metal a different character. There is also a disproportional increase in the risks of the other factors coming into play.

Johnnie
Jonniepk says: “This is my first effort done last night in the log burner. I don’t think it will win any awards, but I’m happy. Great info supplied here.”

Another scenario

This time our coin is badly misshapen and we cannot heat it evenly through our metal plate method or reach a high enough heat with our other methods. The direct application of heat with a flame will be needed. The gas oven ring will do but a propane gas torch will give far more control. Small torches can be obtained from some hobby shops or a jewelry supply merchants. A pair of long nose pliers can be used to hold the coin in the flame but great care must be taken not to mark or damage the coin. Once a coin has been annealed, pliers with a chamois leather wrapping can be used to manipulate the coin into the desired shape. A small rounded piece of hard wood can be used to push out any dents. If you have trouble holding the coin a small wooden jewelry ring clamp might help to hold the coin firmly in place.

A badly misshapen coin might need a lot of work. You should consider carefully beforehand exactly how you are going to manipulate it; a sequence of very deliberate steps is far better than just getting stuck in. Each step might need the coin to be re-annealed to reverse any work hardening caused by your work. A particular task might require several anneals to complete. Be very patient and take as long as you need. A coin does not need to be completely restored in one session. The appearance of a coin might also just benefit from being partially restored, one having considered certain damage too risky to attempt work on.

Postscript

To prevent any confusion I would like to draw attention to the use of some words. Brittleness is a property that may be caused by Work-Hardening but is also used in relation to the completely separate process called Embrittlement. Same property, different cause. Similarly the term Crystallization as used by coin collectors should not be confused with the recrystallization that takes place in annealing. I have also deliberately not referred to the process of Hardening but only to Work-hardening. The process of Hardening is a separate process. I did not consider that it had any relevance to this essay and that its inclusion would only lead to confusion.

___________________________________________________________

Julian Evan-Hart says: “Thanks for sharing that John; it’s little short of superb in its info value … Im sure this will help prevent many of those frightening snaps and cracking sounds in the future … Cheers Jules.

GrumpyJohn says: “Just used this method to straighten an Eddy penny that was bent into a ‘U’ shape. I heated up an old stainless spoon on there gas ring and it worked perfectly. I’m well pleased!

_____________________________________________________________

Bent

© Hutch

UPDATE

The day after this blog post was published a detectorist called Hutch of the BMD forum found a bent Commonwealth coin, which he has now straightened ‘after the usual treatment with heat and quenching’.

He used a small butane torch obtained from eBay for less that £6 and says: After heating the coin with the torch, I dipped it in cold water, gently bent it with my fingers and repeated this process several times until flat. Then he gets all technical, Finally I gave it a whack between two pieces of hardwood … and this is the final result! I think you must agree that it’s quite impressive.

Joined

© Hutch

______________________________________________________________________

Eight years ago I compiled a newsletter for the United Kingdom Detecting Find Database. It was called ‘Borrowed Times’, and below is an excerpt from Number 5, dated January 2008. You may see other publications in the series by clicking on this UKDFD link.

Magic

John

Posts Twitter

The copyright owner of content on this blog is John Winter, unless noted otherwise. Every effort has been made to assure no material was used without permission. If you are the owner and find that your material was inadvertently used without permission then please contact me. Your material will be removed immediately or your copyright message will be added, whatever you prefer.

20 responses to Straightening a Bent Hammered Coin

  1. Not many really old coins in Oz but i will keep the methods in mind in case it’s needed.

  2. Great information as always John. Although like your comment above, I think I would leave it to an expert to do as I would worry too much to do it myself, but maybe one day!

  3. straightened one the other week. Bent in half I thought it was a cut half at first. managed to straighten it using the cooker method.
    (see CS forum for picture)

  4. What a great read. Thank you John

  5. Thanks John another great article full of good advice.
    I have annealed and straightened many of my own creased hammered silvers and then used Plastic Jaw Pliers for jewellery making and repair work to gently persuade the straightening job and I have never had a failure yet and these Pliers are fairly cheap on ebay at £7.
    Just like Clive states some of the Saxon hammered silver coins are very brittle I once dug out a Stephen Penny and was shocked to see it shatter into multiple bits in my hand I presume it must have been the heat from my hand, I have read on the forums of others experiencing a similar disaster with Stephen coins.

  6. Very useful article John, thanks for posting

  7. An extremely informative article John and one to keep! I don’t think I will be straightening my Love Tokens though.

  8. Excellent stuff again, John! Got any advice on straightening bent detectorists? Annealing might be a bit harsh…

  9. Read this article a while back and left a comment. Great advice, thanks for putting it on the forum John!! One thing I will say is examine the coin carefully and if it shows any sign of cracking leave well alone !!

  10. Another great read and sound advice, thanks John

  11. Gordon Heritage has a video somewhere John

    • Thanks for the reminder. I remember seeing that too!
      Will look out for it …

      • LIAM NOLAN says: My great detecting buddy Darien (RIP) was able to straighten the hammies quite well and he used to do it in all sorts of ways.

        My favourite is to place the bent coin in the middle of the Spinks book, wrapped in a sheet of card. Then close the book and over a period of a few days add some heavy books on top. I eventually have a two stone grocery weight that goes on top.

        The coin gets nearly flat over a long period in a warm environment such as an airing cupboard. If you are nervous about the coin cracking then I suppose you could use the Bible and say a few prayers …

Trackbacks and Pingbacks:

  1. Straightening a Bent Hammered Coin - 20th May 2015

    […] […]

Leave a Reply

Text formatting is available via select HTML. <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*

This site uses Akismet to reduce spam. Learn how your comment data is processed.